PAKISTAN ISLAMICUS

(An International Journal of Islamic and Social Sciences)

Volume:04, Issue:01, 2024, Pages:71-89

Journal Website: https://pakistanislamicus.com/index.php/home Publisher Website: https://www.mircpk.net

PUBLIC-PRIVATE SECTOR INVESTMENT COLLABORATION IN HEALTH SECTOR OF PAKISTAN: DO TAXES ON PRODUCER AND GOVERNMENT EFFECTIVENESS MATTER?

Khawaja Asif Mehmood¹, Sidra Ilyas², Fareeha Riaz³, Farzana Munir⁴, Muhammad Aurmaghan⁵

- ¹Assistant Professor of Economics, School of Economics, Bahauddin Zakariya University, Multan, Punjab, Pakistan. Email: khawjaasif@bzu.edu.pk
- ²Assistant Professor of Economics, School of Economics, Bahauddin Zakariya University, Multan, Punjab, Pakistan. Email: sidrailyas@bzu.edu.pk
- ³ Assistant Professor, National University of Modern Languages, Islamabad, Pakistan. Email: friaz@numl.edu.pk
- ⁴Assistant Professor of Economics, School of Economics, Bahauddin Zakariya University, Multan, Punjab, Pakistan. Email: farzanamunir@bzu.edu.pk
- ⁵ PhD Economics Scholar, School of Economics, Bahauddin Zakariya University, Multan, Punjab, Pakistan. Email: aurmaghankhan@gmail.com

ARTICLE INFO

Article History:

February 12, 2024 Received:

Revised: March 10, 2024

Accepted: March 12, 2024

Available Online: March 14, 2024

Keywords:

Private-Public Sector Investment

Taxes on Producer

Government Effectiveness

ARDL

Pakistan

Funding:

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyrights:

Copyright Muslim Intellectuals Research Center. All Rights Reserved © 2021. This work is licensed under a Creative Commons Attribution 4.0 International License

ABSTRACT

A collaboration between public and private investment is always looked forward for efficient services to the country's citizens, especially in the health sector. If the public sector is reluctant to address investment needs, the private sector can replace it for good. However, government effectiveness and taxes on producers can sway away the motivation of the private sector towards fruitful investment. This study was initiated in Pakistan to address these concerns based upon empirical analyses ranging from 1980 to 2023 through the methodology of Autoregressive Distributed Lag (ARDL). Findings confirm public investment and taxes on producers to reduce private sector investment in both time horizons. On the contrary, government effectiveness is found to encourage private sector investment in both time horizons. Therefore, it is suggested the concerned authorities be careful in initiating public sector investment as it is a substitute for private investment. Moreover, taxes must be progressive in nature so that private investment is not discouraged. Finally, the government's effectiveness is suggested to be strengthened for better standing of private investment.

Corresponding Author's Email: khawjaasif@bzu.edu.pk

INTRODUCTION

The public-private partnership in the emerging economies holds a potential to addressing the socioeconomic challenges such as economic growth, trade, poverty, unemployment, and particularly the sector of education and health. Such partnerships for countries like Pakistan can serve as a best practice to accord the quality services to the citizens. When done rightly, such investment collaborations assist to overcome the structural barriers within the national frontiers. Strong public-private investment strategies help to create jobs therefore protect the national interests at large. It is important here to record that the stakeholders are more likely to prioritize the societal goals such as health sector facilities to be created in a diverse manner for quality and affordable services to the country citizens. However, somewhat often the public-private collaborations cause to create competitions between the two and leads to act against each other therefore affecting the sufficiency and efficiency of services to the citizens (World Economic Forum, 2022).

Private sector investments are pledged in terms of Foreign Direct Investment (FDI), which, according to Organization of Economic Cooperation and Development (OECD), are meaningful towards the emerging economics like Pakistan. Such investment capital is found domination the significant positive growth during the early 21st century and hereafter the phase of COVID-19.

At the same time, the government of the state is also required to harden the market powers for the incentivization of the market needs. The public-private investment collaborations are none other than the attempts to forge the market-based programs in order to create the demand for the goods and to spur the creativity of either investment base to meet the shared goals of betterment and efficient services to the country nationals at large. Today, for countries like Pakistan, it is a time for siloed thinking for appropriate public-private investment collaboration to solve the problems, especially in the health sector of Pakistan. It is time to be collaborative to promote social good and positive and systematic investment strategies in the large interest of the general public. The private sector needs to speak for the social change, and the public sector to establish economic incentives to harden the innovations of private sector and expertise to address the challenges of the society.

However, it is noticed that private sector is replicated by the public sector, especially in the areas where the goal of investment expenditure is less confined towards the profit motive rather much of the weightage and investment goals are to provide the services at large. Therefore, private sector who finds health sector to be less promising towards profit making neglects it for good given public sector is there to facilitate the country citizens at large. To private sector, the projects like roads, highways, sea ports, power generation, and railways are more encouraging in swelling business revenue. Therefore, more often, the user charges are higher on economic infrastructure thus initiate private sector to be swept away from carrying out heavy investment in the sectors like health. Though knowing these facts, private sector investment is still required because significant number of pupils do not worry accessing the costly private health facilities for better health treatments. It is also important to notice the over spending by either sector leads to not more than the wastage of the resources and unhealthy business competition. In this regard, private sector is more sensible to smell the number of running public sector project in the relevant area therefore steps back since the slogan of welfare and cheap health facilitations attract the people at large.

At the other end, taxes being a source of government revenue is to narrow down the gap between revenue and cost of production thus make private sector to feel passive towards the investment initiatives. In non-documented economies like Pakistan the tax policy is an art of possible rather than a pursuit of an optimal. But still, taxes on producer are beyond the doubt malignant for a private producer. To International Monetary Fund ((IMF), 2001), there is no statistical approach to compare the tax level between the developing and industrious economies. However, though the taxes in the developing-undocumented-economies are less than those levied in the industrious countries still are destructive for the private investor. The problem emanates when the state government fails to allocate the tax-based-savings on the sectors where the taxes caused private sector to step down from the business thus making the general public to be the ultimate sufferer.

Another important determinant of private investment is the quality of governance (The World Bank, 1994). The good governance is central in creating and sustaining the socioeconomic issues by the mean of strong and equitable development. Government which makes the rules to run the country with harmony are based upon the target of realizing working efficiency and to address the market failures (The World Bank, 1992). Therefore, a fool-proof system of accountability, reliable information, and efficient resource management are the key elements to foster and strengthen the bonding of private sector investments, especially in the sector that is not out spoken in terms of rendering profit (The World Bank, 1994).

This study is novel to emplacing the collaboration of public-private investment in the health sector of Pakistan together with the effects of taxes on producers and government effectiveness on the private sector.

LITERATURE REVIEW

This study visualizes the impact of public sector investment together with the trace out of government effectiveness and taxes on producer to posit the impact on the private sector investment in the health sector of Pakistan. The empirics, though fewer, endeavored to discover such relationship between public and private investment.

The complementary relationship between public and private investment is vast and not limited to just health sector. The empirics also explored the effects of such spending on the ecological foot prints, the economic growth, energy, technological innovations, trade across the national frontiers, and sector like agriculture, manufacturing, and services (Dogan, et al., 2020; Kirikkaleli, et al., 2021; Yang et al., 2021; Adebayo, et al., 2021; Morea & Balzarini, 2019; Morea & Gebennini, 2021; Chunling, et al., 2021; Hassan, et al., 2011).

The environmental affectations are also analyzed by Khan et al. (2020) on Pakistan, Kirikkaleli and Adebayo (2021) on India, and on China by Shahbaz et al. (2020). Also, Waqih et al. (2019) traced these effects on South Asia. Not only this, but the amalgamations of public and private sector investments are located on the transport sector, renewable energy consumption, and environmental emission (Ahsan et al., 2021). The economic growth resting upon these two investment platforms is traced by Lin and Omoju

(2017). However, though mixed are the findings posted by Xue et al. (2017a; 2017b) and by Cruz and Karz-Gerro (2016) who explored that the improved environment at the back of private and public investment ventures are established with respect to technological improvement. The environmental hazards, economic growth, and renewable energy are related and either of the investment in the renewable sources do not worsen the environmental and also help fostering the economic growth (Qiao et al., 2019) Hassan et al. (2011), discovered the public-private sector investment sustenance in Malaysia in manufacturing, agriculture, and service sector. The panel regression technique to find favorable results of public-private investments. The investment partnership of private and public sector is also viewed in water, energy, sanitation, transport, telecommunication, education, and health by Fabre and Straub, 2023). Findings approved a trade-off between public-private investments. On the similar ground, such collaborative investments are also found to initiate their contributions in the country of origin (Maluleke et al., 2023).

Public-private investment partnership is not away from the global health sector. Storeng et al. (2021) examined the relationship of such investment collaborations in the health sector. Findings affirmed that public-private investment strategies are welcoming for creating investment challenges which are associated with public and private sector alone. The result of the study of Storeng et al. (2021) assured limited success at the back of limited charities working in the society especially in the global health sector. Such investment partnerships are initiated in the medicines for tuberculosis, HIV/AIDS, and malaria. To Gavi (2020), the business know-how and technical expertise are the main factors to distillate upon for the positive results of public and private investment collaborations. According to Buse and Harmer (2004;2007), the corporate sector issues and governing bodies affect such investment partnerships. However, such investment collaborations are located to making piecemeal exertions to redressing the disparities by the mean of evolving the civil societies and increasing the number of board members for better investment outcome (Puyvallee & Storeng, 2017; Storeng, 2014).

Under the charter of joint venture investments, medicines are acquired from the foreign vendors with the expectation of fall in the prices (Stein, 2021; Eccleston-Turner & Upton, 2021). Usher (2021) and Toronto Sun (2021) examined G7 countries as purchasing vaccines through COVEX, with the entitlement of self-financing member. In this regard, Stein (2021) discovered that the public sector subsidies are understood to as extensively persuading factor for the inspiring innovation for the favorite outcome. Fair-price and substantial funding promises are the steps taken to reinforce public-private investment collaborations (Gavi, 2021; Gavi, 2020; The Guardian, 2021, Fortune, 2020). Though the vague inadequacies are apparent (Storeng & Puyvallee, 2018; Buse & Harmer, 2007). Private sector, inclination with public sector, for fund outlay activities is globally recognized for the healthier investment outcomes, exclusively for the consolidation of the health sector (Holzscheiter et al., 2016; Bartsch, 2011; Bull & McNeill, 2007; 2019).

Private sector is greeted by the state-run governments to take hold of the government organizations at the

potential of executing quality services to the inhabitants of Saudi Arabia. Rahman (2020) prescribed that Saudi government to reinforce public health sector for affordable, accessible, and quality services. However, the privatizing the state organization raises the cost of services but on the other end improvises population health services (Tu, 2013; WHO, 2000). Governments do suggest free of cost services but ever-growing financial challenges hinder to offer these subsidized services for long (Young, 2018; Young, 2015). Thus, the literature highlights that the efforts are to fulfill social needs of possibly quality health services with the collaboration of private sector that is an artiste heavily engaged in health sector through managerial and financial services (Uplekar, 2000; Rahman, 2019).

Public-private sector investment collaborations are advocated by World Health Organization and The World Bank as a path to improve health care services for the population (Buse, 2001; The World Bank, 1993). According to Colliers (2018); Roehrich et al. (2014); Rahman (2019), and Alghamdi (2014), private sectors' contribution in health services increases with the passage of time and also let the government to step back progressively because of the lack of confidence of patients on public sector medications. Consequently, heavy dependance on health care goods and private sector financial services is evident (Rahman, 2020; Rahman, 2019).

Besides the favorable outcomes, more than a few empirics attempted to highlight about the complaints which are filled against health services by the private sector including; low quality equipment, unregistered poor infrastructure, obscuring service conditions, low qualification of the personnels, overuse of technology for money making, service based upon commissions, heavy cost treatment, wrong diagnosis, excessive prescription of drugs, missing business ethics, profit motivation, negligible attention to the patient care, and deficient service quality which are analogous to those drawn on public sector (Rahman, 2007; Bhate-Deosthali et al., 2011).

Private sector can possibly cause the governance issues if the financial crises get to be intensified (Williams, 2020). Because of costly treatment, Keyna and India experience insurers to capping the amount of finance for patients those are intended to have treatment with the private sector health institutes (Mirror Online, 2020; Bhuyan, 2020; Nazari, 2020). It is explored by Ang (2020), Limpot (2020), Ara (2020), and Ying (2020) that the beds are kept concealed from the state authorities and patients of Africa, Asia, India, and Latin American. Here Boonbandit (2020), Antara (2020), Loo (2020), and Tiglao (2020) found that the treatments of COVID-19 patients are mostly handled by private sector in Egypt, Philippines, Malaysia, and Indonesia. On the contrary, Hellowell et al. (2020) and Kruse and Jeurissen (2020) explored that the outdoor service is adjourned in emergency situations. The insurance premiums are also found unhealthy in supporting the treatments of the patients in private sector hospitals (Dhara, 2020; Hellowell et al., 2020). In this regard, Orissa Post (2020a; 2020b; 2020c) discovered high-cost medication in the private sector hospitals.

Empirics of Onis and Kutlay (2021) and Ayhan Ustuner (2022) recognized that public-private sector investment collaborations deliver cost shared services and infrastructure with sharing. Aptly managed

institutional framework, transparent procurements, and effective regulatory policies promise to bring service quality to the citizens (whiteside, 2020; Ayhan &, Ustuner, 2022). In the meantime, as a rebuttal to this opinion, Onis and Kutlay (2021) and Bedirhanoglu (2021) found that politicization, centralization, and personalization replaces depoliticized economic management together with discretion as well as lack of accountability. Thus, in the questionnaire-based research of Aydin (2021), it is found that only 39.8 percent of the respondents consider such investment collaborations as viable.

Number of questions regarding public-private investment are still unaddressed. The thorough look of the literature reveals number of gaps and shortcomings that are found to still persist before giving a verdict whether private investment is in collaboration with public sector or there is a crowding out effect between the two, especially in the health sector which is a matter of concern to people who intend to stay healthy but do bother for the high expenses whereas the others are faced with no any financial constraints. Being a business of due concern, the utmost necessity is of a supplementary study in order to entirely comprehend the significant tents of public-private investment, whether substitute or complimentary of each other.

At this point, government effectiveness and taxes on producers are also required to be evaluated for whether both variables are transposable into favoring private sector investment spending in the health sector of Pakistan, where the literature is missing. Therefore, the individuality of this study is situated on addressing of the lacking scientific literature which highlights the domain of public-private sector investment collaborations altogether with either of the affectations of taxes on producers and government effectiveness.

METHODOLOGICAL FRAMEWORK

This study aims to investigate tradeoff between public-private investment spending and effects of government effectiveness and taxes on producers on the private investment spending in the health sector of Pakistan. For analytical results, the variables included in this study are described in Table 1.

Table 1
Description of the Variables

Variable	Measurement		
Private Health Expenditure (PHE)	Current Expenditure at Consumer Purchasing Power		
	Parity		
Government Health Expenditure	Current Expenditure at Consumer Purchasing Power		
(GHE)	Parity		
Inflation (INF)	Consumer Price Index		
Population Growth (PGR)	Population Increase Within Mid-Point of the Year and		
	Prior Point		
Poverty (PVR)	Based on International Poverty Line		
Government Effectiveness (GEF)	Estimate of governance Effectiveness; -2.5 (weak) to -2.5		
	(strong)		
Taxes on Producer (TOP)	In Million & Local Currency Unit		

Data Collection

For the detailed empirical analyses, time series variables are recorded from the domain of Handbook of State Bank of Pakistan and World Bank Development Indicators. The observations are recorded from 1980 to 2023.

Model Specification

To meet the objective of the study, following models are prescribed to offer the empirical analyses.

$$PHE = f(GHE, PGR, INF)$$
 [1a]

$$PHE = f(GHE, PGR, GEF)$$
 [1b]

$$PHE = f(GHE, INF, TOP)$$
 [1c]

The econometric form of the model is given in Equation [2a, 2b, 2c].

$$PHE_{t} = \beta_{0} + \beta_{1}GHE_{t} + \beta_{2}PGR_{t} + \beta_{3}INF_{t} + \varepsilon_{t}$$
 [2a]

$$PHE_{t} = \beta_{0} + \beta_{1}GHE_{t} + \beta_{2}PGR_{t} + \beta_{3}GEF_{t} + \varepsilon_{t}$$
 [2b]

$$PHE_{t} = \beta_{0} + \beta_{1}GHE_{t} + \beta_{2}INF_{t} + \beta_{3}TOP_{t} + \varepsilon_{t}$$
 [2c]

The coefficients are β_i and ε_t is the error term.

3.3 Test of Stationarity

For the accuracy of the measurements of coefficient, Dickey-Fuller introduced stationarity test in 1979. The test version is later enhanced and termed Augmented Dickey-Fuller in 1981. This test is extensively used in time series analysis (Mehmood, 2023).

The formation of Augmented Dickey-Fuller test is given in Equation [3] and Equation [4], respectively.

$$\Delta y_{t} = b_{1} + b_{2}t + \delta y_{t-1} + \beta_{t} \sum_{t=1}^{m} \Delta y_{t-1} + \mu_{t}$$
[3]

The residual white noise term is μ_t and the sequential predictor is Y_t however, δ represents the status of stationarity.

$$\Delta y_{t-1} = (y_{t-1} - y_{t-2}), \Delta y_{t-2} = (y_{t-2} - y_{t-3})$$

The test statistic that is less than the critical value categorizes the variable to be stationary. When the results are in mixture of I(0) and I(1) both, the regression technique of ARDL is used.

Bound Test

The Bound Test, established by Pesaran et al. (2001), is a statistical tool to find long run cointegration between the time series variables. Bound Test goes along with ordinary least square for computing Wald Test F-Statistic. The null hypothesis of no cointegration (H) $_0$ is if;

$$\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4 = \sigma_5 = \sigma_6 = \sigma_7 = \sigma_8$$
. On the other hand, the alternate hypothesis (H₁);

 $\sigma_1 \neq \sigma_2 \neq \sigma_3 \neq \sigma_4 \neq \sigma_5 \neq \sigma_6 \neq \sigma_7 \neq \sigma_8$ that represents long run cointegration if the computed *F*-Statistic is held to be not than the upper bound critical value.

Autoregressive Distributed Lag

The ARDL model is used to examine the coefficients in long run and short time.

Long run Coefficient Estimation

The variables are found for mixed level of integration such as I(0) and I(1). Therefore, ARDL is valid approach to find cointegration and measurement of short run and long run coefficients. Thus, the unrestricted error correction model for Eq [1] is structured in Equation [5a, 5b, 5c]

$$\begin{split} &\Delta PHE_{t} = \alpha + \beta_{1}PHE_{t-1} + \beta_{2}GHE_{t-2} + \beta_{3}PGR_{t-3} + \beta_{4}INF_{t-4} + \\ &\sum_{l=0}^{P_{1}} \delta_{1}PHE_{t-i} + \sum_{l=0}^{P_{2}} \delta_{2}GHE_{t-i} + \sum_{l=0}^{P_{3}} \delta_{3}PGR_{t-i} + \sum_{l=0}^{P_{4}} \delta_{4}INF_{t-i} + \varepsilon_{t} \\ &\Delta PHE_{t} = \alpha + \beta_{1}PHE_{t-1} + \beta_{2}GHE_{t-2} + \beta_{3}PGR_{t-3} + \beta_{4}GEF_{t-4} + \\ &\sum_{l=0}^{P_{1}} \delta_{1}PHE_{t-i} + \sum_{l=0}^{P_{2}} \delta_{2}GHE_{t-i} + \sum_{l=0}^{P_{3}} \delta_{3}PGR_{t-i} + \sum_{l=0}^{P_{4}} \delta_{4}GEF_{t-i} + \varepsilon_{t} \\ &\Delta PHE_{t} = \alpha + \beta_{1}PHE_{t-1} + \beta_{2}GHE_{t-2} + \beta_{3}INF_{t-3} + \beta_{4}TOP_{t-4} + \\ &\sum_{l=0}^{P_{1}} \delta_{1}PHE_{t-i} + \sum_{l=0}^{P_{2}} \delta_{2}GHE_{t-i} + \sum_{l=0}^{P_{3}} \delta_{3}INF_{t-i} + \sum_{l=0}^{P_{4}} \delta_{4}TOP_{t-i} + \varepsilon_{t} \\ &\sum_{l=0}^{P_{1}} \delta_{1}PHE_{t-i} + \sum_{l=0}^{P_{2}} \delta_{2}GHE_{t-i} + \sum_{l=0}^{P_{3}} \delta_{3}INF_{t-i} + \sum_{l=0}^{P_{4}} \delta_{4}TOP_{t-i} + \varepsilon_{t} \\ &\left[5c\right] \end{split}$$

Short run Coefficient Estimation

The estimations of short run coefficients are carried out, in sequel of the estimation of long run coefficient, by the mean of error correction model. The illustration of the short run model is given in Equation [6a,6b,6c].

$$\Delta PHE_{t} = \alpha + \sum_{l=0}^{P_{t}} \lambda_{1} \Delta PHE_{t-i} + \sum_{l=0}^{P_{2}} \lambda_{2} \Delta GHE_{t-i} + \sum_{l=0}^{P_{3}} \lambda_{3} \Delta PGR_{t-i} + \sum_{l=0}^{P_{4}} \lambda_{4} \Delta INF_{t-i} + \\ \partial ECT + \varepsilon_{t}$$

$$\Delta PHE_{t} = \alpha + \sum_{l=0}^{P_{t}} \lambda_{1} \Delta PHE_{t-i} + \sum_{l=0}^{P_{2}} \lambda_{2} \Delta GHE_{t-i} + \sum_{l=0}^{P_{3}} \lambda_{3} \Delta PGR_{t-i} + \sum_{l=0}^{P_{4}} \lambda_{4} \Delta GEF_{t-i} + \\ \partial ECT + \varepsilon_{t}$$

$$\Delta PHE_{t} = \alpha + \sum_{l=0}^{P_{1}} \lambda_{1} \Delta PHE_{t-i} + \sum_{l=0}^{P_{2}} \lambda_{2} \Delta GHE_{t-i} + \sum_{l=0}^{P_{3}} \lambda_{3} \Delta INF_{t-i} + \sum_{l=0}^{P_{4}} \lambda_{4} \Delta TOP_{t-i} + \\ \partial ECT + \varepsilon_{t}$$

$$(6c)$$

The estimated short run coefficients are shown by λ_i and \hat{O} is the coefficient of *ECT* that represents the speed of adjustment of the long run equilibrium.

Diagnostic Checking

The statistical computations are needed to be observed for the reliability. In this manner, the Breusch-Pagan-Godfrey LM, RAMSEY RESET, heteroskedasticity, histogram normality, and CUSUM and CUSUM_{Squared} are exercised. The changes that occur in the specific regression model are viewed by Breusch-Pagan-Godfrey LM test. The RAMSAY RESET test is to know the correctly specified functional form of the regression model. The heteroskedasticity test is to perceive the existence of heteroskedasticity. Additionally, the normal probability plot is said to be linear if the histogram indicates the moderate tailed distribution thus showing the normally distributed residuals.

RESULTS AND DISCUSSIONS

This section discusses the results of descriptive statistics and empirical analyses.

Descriptive Analyses

Table 2
Descriptive Statistics

	GHE	PHE	PGR	INF	GEF	TOP
Mean	26.89	69.54	2.57	8.19	-0.52	47894.77
Minimum	16.27	57.49	1.20	2.53	-0.81	2392.60
Maximum	37.89	80.48	4.42	20.29	-0.26	194474.40
Std. Dev.	4.08	3.87	0.84	3.67	0.17	49396.23
Skewness	0.44	-0.45	0.14	0.66	-0.33	1.23
Kurtosis	4.46	5.29	2.16	3.91	1.73	3.62
Jarque-Bera	5.19	10.87	1.41	4.62	3.67	11.45
Prob.	0.07	0.00	0.49	0.00	0.16	0.00

The detailed descriptive statistical analyses are given in Table 2. Wide dispersions from the respective mean values are evident on GHE and PHE. In case of PGR also the situation is not different. However, the TOP is recorded to have consistency in the data records when minimum, maximum, mean, and standard deviation are observed. There are two variables which are PHE and GEF those are negatively skewed. Rest are positively skewed variables. Apart from PGR and GEF, all the variables are platykurtic and have normally distributed residuals.

Test of Stationarity

The assessment of the status of stationarity, given in Table 3, indicates that PGR, INF, and GEF are integrated of order I(0) whilst the rest are integrated of order I(1).

Table 3
Test of Stationarity

Variable	t-Statistic	Prob.	Conclusion
GHE	-6.91	0.00	I(1)
PHE	-7.36	0.00	I(1)
PGR	-4.17	0.01	I (0)
INF	-3.12	0.03	I (0)
GEF	-4.69	0.00	I (0)
TOP	-6.86	0.00	I(1)

Bound Test

The long run relationship between public-private sector investment in health sector is inspected through Bound Test. If the H_0 is not rejected, there is no any long run relationship. However, the rejection of H_0 suggests long run relationship between the variables of interest.

Table 4
Bound Test

Model-I				
	Computed Value	K		
F-Statistic	14.07	3		
Critical value at I(1) 3.99*				
Model-II				
	Computed Value	K		
F-Statistic	8.93	3		
Critical value at I(1) 3.90*				
Model-III				
	Computed Value	K		
F-Statistic	5.24	3		
Critical value at I(1) 4.13*				

^{*}Recorded at 5 percent level of significance

The results published in Table 4 qualify to approve potential long run relationship between public-private sector investment in the health sector of Pakistan. which is the core objective of the study. The computed *F*-statistic is above the upper bound critical value I(1) and also significant at 5 percent level of significance.

Long Run Coefficients

The long run coefficient estimates in each model are given in Table 5. The long run coefficient of GHE assures negative relationship with PHE. Therefore, it is interpreted as; any of the one unit increase in GHE is to reduce PHE by -1.02, -0.97, and -1.05 units. Hence the significant deduction is that; public-private sector investment on health sector is substitute of each other and not complementary. Therefore, findings go with those of Aydin (2021) that any fruitful public-private partnership is less viable. Findings also go away from those recorded by Khursheed et al. (2023) and Hassan et al. (2011). The results disapprove any understandable business between public-private sector, exclusively in the health sector as suggested by the empirics such as; Holzscheiter et al., (2016), Bartsch (2011), Bull and McNeill (2007; 2019).

Table 5
Long Run Coefficients

Model-I			
Variable	Coefficient	Std. Error	t-statistic
GHE	-1.02*	0.05	-19.80
PGR	0.32*	0.18	1.76
INF	-0.11*	0.05	-2.33
С	97.08*	1.82	53.25
Model-II	<u> </u>		·
Variable	Coefficient	Std. Error	t-statistic
GHE	-0.97*	0.03	-38.49
PGR	0.65*	0.21	3.11
GEF	6.12*	1.02	6.02
С	100.53*	1.34	75.07
Model-III	•		•
Variable	Coefficient	Std. Error	t-statistic
GHE	-1.05*	0.07	-15.66
INF	-0.14*	0.06	-2.15
TOP	-0.00	0.00	-0.57
C	99.06*	2.11	46.83

^{*}Shows significant at 5 percent.

The negative collaboration between public-private investment is observed in a way that the state government is found cheaper and better source of health-related service provider as compared to private sector thus private sector investment in health sector move away by the arrival of any incremental investment spending in the same sector by the side of government. Private sector is found discouraged in carrying out investment at the back of excessive government investment. This is however observable that what people think about this reduction in private sector health-related investment. These results make the

concerned authorities to think if the government's latest health sector investments are of good quality or otherwise. If former is true, it is not to negatively affect the demands of the general public but the confusion remains there since government of Pakistan is already indebted to large extent thus it is felt that in such a situation it is hard to focus on quality health service provisions as are usually available at the platform of private sector.

From the other dimension, public sector is found to give receptions to the private sector to taking part in the provisioning of health facilities, notwithstanding of the fact that people are worry less about the rising expenses but instead go to avail quality medication (WHO, 2000; Rahman, 2020; Tu, 2013). Apart from the consequences that whether people prefer to move to public or private health treatments, the state of business positions merged with the private sector health centers are not encouraging as found by Mirror Online (2020), Bhuyan (2020), Ying (2020), Limpot (2020), Dhara (2020); Hellowell et al. (2020). In case of PGR, the results are significant and positive. Therefore, it goes out of question that with ever growing population, health sector investment spendings by private sector are to move alike. The findings on the variable of inflation are negative and statistically significant. Any rise in the price level of the economy discourages people to move to high-costed private sector health institutions. Therefore, looking into this fact, private sector investment on health sector is to fall at the back of increase in the prices. At particular to GEF and TOP, the results assure that private sector investment on health sector is reliant on quality of governance and effective implementation of government plans. The 6.12 unit increase in private sector investment on health sector is recorded if there's one unit increase in the GEF. However, the impact of TOP is though negative but very minute and insignificant. Thus, it is argued that TOP is not to affect the investment decisions of the private sector towards carrying out fund endowments in the health sector. The constant of each model is also significant, which means that the omitted variables are positive and significant in their effect on PHE.

Short Run Coefficients

The results of short run coefficients are given in Table 6. The coefficient of GHE is mostly found to have similar results at each model. Only at the lag of one year, the status of the relationship of GHE with PHE is positive. It means that in short run, like long run, the public-private sector health investment collaborations are found to be substitute of each other. The result of PGR is positive in Model-I and Model-II. Therefore, with every increase in population growth, the investment spending by private sector is initiated in short run. The effects of INF are consistent, statistically significant, and negative on PHE. Importantly, the affectations recorded on GEF are encouraging for PHE as found in long run. Since it is confirmed that strong dependance is there between government effectiveness and private sector health sector investment program. However, the results of TOP are similar like those recorded in long run. The coefficient of error correction term in each model is significant and correctly specified but case of Model-II, there is found some oscillatory convergence. The concluding fact is that in case of Model-I and Model-III any of the long run disequilibrium is adjusted at the rate of 98 and 94 percent, respectively.

Table 6
Short Run Coefficients

Model-I				
Variable	Coefficient	Std. Error	t-statistic	
D(GHE)	-0.80*	0.04	-18.89	
D(PGR)	1.54*	0.57	2.69	
D(INF)	-0.11*	0.04	-2.50	
ECT (-1)	-0.98*	0.11	-8.26	
Model-II	·		•	
Variable	Coefficient	Std. Error	t-statistic	
D(PHE(-1))	0.17*	0.10	1.69	
D(GHE)	-0.65*	0.04	-16.18	
D (GHE (-1))	0.31*	0.12	2.47	
D(PGR)	1.10*	0.54	2.05	
D(PGR(-1))	0.05	0.65	0.07	
D (PGR (-2))	1.60*	0.62	2.56	
D(GEF)	10.43*	1.56	6.64	
D (GEF (-1))	5.26*	1.53	3.44	
<i>ECT</i> (-1)	-1.54*	0.21	-7.15	
Model-III				
Variable	Coefficient	Std. Error	t-statistic	
D(GHE)	-0.80*	0.04	-18.11	
D(INF)	-0.12*	0.04	-2.64	
D(TOPAD)	-0.00*	0.00	-1.72	
<i>ECT</i> (-1)	-0.94*	0.12	-7.74	

^{*}Shows significant at 5 percent.

Diagnostic Checking

Table 7
Diagnostic Checking

Model-I			
Diagnostics	F-Statistics	H ₀	
Breusch-Pagan-Godfrey LM	0.03 (0.97)	No auto correlation	
Heteroskedasticity	6.67 (0.87)	Heteroskedasticity is not found	
RAMSEY RESET	3.87 (0.17)	Model is correctly specified	
Histogram-Normality	0.71 (0.70)	Normally distributed residuals	
Model-II			
Diagnostics	F-Statistics	Conclusion	
Breusch-Pagan-Godfrey LM	2.49 (0.10)	No auto correlation	
Heteroskedasticity	6.67 (0.54)	Heteroskedasticity is not found	
RAMSEY RESET	0.58 (0.12)	Model is correctly specified	
Histogram-Normality	0.72 (0.58)	Normally distributed residuals	
Model-III			
Diagnostics	F-Statistics	Conclusion	
Breusch-Pagan-Godfrey LM	0.28 (0.75)	No auto correlation	
Heteroskedasticity	1.61 (0.44)	Heteroskedasticity is not found	
RAMSEY RESET	1.18 (0.26)	Model is correctly specified	
Histogram-Normality	0.76 (0.51)	Normally distributed residuals	

Probabilities are in parenthesis

The outcomes of diagnostic checking are given in Table 7. The findings confirm absence of the issue of auto correlation, heteroskedasticity, wrong specification of the model, and the abnormal distribution of the residuals.

CUSUM-CUSUM_{SOUARED} TEST

The CUSUM and CUSUM_{SQUARED} results are given in Figure 1. The traceable paths substantiate the accuracy of the parameters of the models in short run and long run and the stable intercept. Moreover, the coefficients are also found to be stable. Since the H_0 is not rejected, the conclusion is that the models are consistent, stable, and have no any structural break.

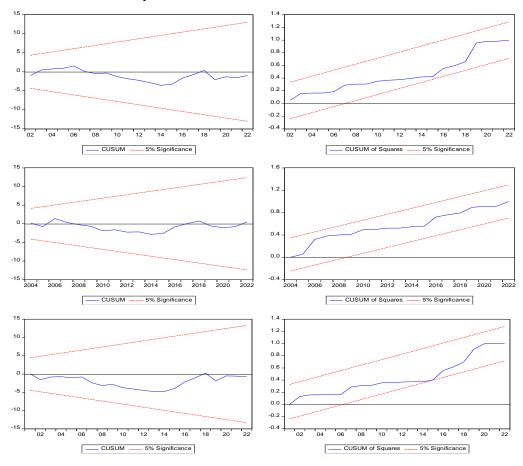


Figure 1
CUSUM-CUSUM_{Suared} Test

CONCLUSION & POLICY RECOMMENDATION

Public-private sector investment collaborations are essential for the suitable resource allocation. For the countries like Pakistan which are considered as a host for valuable health service provisions to the citizens, such collaborative investments are not of cursory importance. However, it is important to understand that private sector investment is not always initiated by the public sector investment. Sometimes, the foot prints of public investments are not followed by private sector rather are viewed as substitutes instead. This study went with checking the impact of public sector investment spending on health sector on the

private sector investment spending on this very sector. Time series-based results confirm negative relationship of the two in short run and long run. Therefore, concluding that both bases of investment spendings are substitute of each another.

Further to that, government effectiveness is found to initiate private sector investment spending on health sector. Thus, effectiveness of government is the key to trigger such valuable investments. And the taxes on producers are found to post negative effects on such worthy investments. It is thus indispensable to

evaluate if such heavy tax impositions are worthy of being kept in a line of trend as they are and to let the burden be beard by the government to take hold of initiating investment by itself whilst as a substitute factor, private sector is available which offers quality services to the citizens at large.

REFERENCES

Adebayo, T., Genç, S., Castanho, R., Kirikkaleli, D. (2021). Do public–private partnership investment in energy and technological innovation matter for environmental sustainability in the East Asia and Pacific Region? An application of a frequency domain causality test. Sustainability, 13(6), 1-15.

Ahmad, M., & Raza, M.Y. (2020). Role of public-private partnerships investment in energy and technological innovations in driving climate change: Evidence from Brazil. Environ. Sci. Pollut. Res., 27, 30638–30648.

Alghamdi, F. S. (2014). The impact of service quality perception on patient satisfaction in government hospitals in southern Saudi Arabia. Saudi Med J., 35, 1271-1273.

Ang. C. (2020). Oman: Private hospitals cannot turn away COVID-19 patients. Middle East Insurance Review, Retrieved from:

https://www.meinsurancereview.com/News/View-NewsLetter-Article?id=72520&Type=MiddleEast Antara. (2020). State, private hospitals ready to contain COVID-19: Govt. Tempo. Co. Retrieved from: https://en.tempo.co/read/1320850/state-private-hospitals-ready-to-contain-covid-19-govt

Ara, F. (2020). Private hospitals continue to refuse COVID-20 patients in Chattogram. New Age. Retrieved from: https://www.newagebd.net/article/107421/privatehospitalscontinue-to-refuse-covid-19-patients-in-chattogram

Aydin, M. (2021). Quantitative research report: Turkey trends 2021. Akademetre and Global Academy, Kadir Has University Turkey Studies Group.

Ayhan, B., & Ustuner, Y. (2022). Turkey's public-private partnership experience: A political economy perspective. Southeast European and Black Sea Studies, 23(1), 115-138.

Bartsch, S. (2011). A critical appraisal of global health partnerships. In S. Rushton & O. D. Williams (Eds.), Partnerships and foundations in global health governance (pp. 29–52). International Political Economy Series. Palgrave Macmillan.

Bhate-Deosthali, P., Khatri, R., & Wagle, S. (2011). Poor standards of care in small, private hospitals in Maharashtra, India: Implications for public–private partnerships for maternity care. Reprod Health Matters, 19, 32-41.

Bhuyan, A. (2020). Covid Patients' claims denied as insurers, private hospitals battle over bills. Bloomberg. 29 September. Retrieved from: https://www.bloombergquint.com/coronavirus-outbreak/covid-patients-claims-denied-as-insurers-private-hospitals-battle-over-bills

Boonbandit, T. (2020). Gov't says private hospitals can't charge COVID-19 treatment. Retrieved from: https://www.khaosodenglish.com/news/business/2020/40/06/govt-says-private-hospitals-cant-charge-covide-19-treatment/

Bull, B., & McNeill, D. (2007). Development issues in global governance: Public-private partnerships and market multilateralism (1st ed.). Routledge.

Bull, B., & McNeill, D. (2019). From market multilateralism to governance by goal setting: SDGs and the changing role of partnerships in a new global order. Business and Politics, 21(4), 464–486.

Buse, K., & Harmer, A. (2004). Power to the partners? The politics of public-private health partnerships. Development, 47(2), 49–56.

Buse, K., & Harmer, A. M. (2007). Seven habits of highly effective global public–private health partnerships: Practice and potential. Social Science & Medicine, 64(2), 259–271.

Buse, K., & Waxman, A. (2001). Public-private health partnership: A strategy for WHO. B World Health Organ. 79, 748-754.

Chunling, L., Memon, J. A., Thanh, T. L., Ali, M., & Kirikkaleli, D. (2021), The impact of public-private partnership investment in energy and technological innovation on ecological footprint: The case of Pakistan. Sustainability, 13(2021), 1-16.

Colliers International. (2018). Kingdom of Saudi Arabia Healthcare Overview. Colliers International, Dubai.

Cruz, I. S., & Katz-Gerro, T. (2016). Urban public transport companies and strategies to promote sustainable consumption practices. J. Clean. Prod. 123, 28-33.

Dedirhanoglu, P. (2021). Economic management under the presidential system of government in Turkey: Beyond the depoliticization verus repoliticisation dichotomy. Journal of Balkan and near Eastern Studies, 24(1), 97-113.

Dhara, T. (2020). India's shift to insurance-led private healthcare weakens its ability to combat COVID-19: Experts. The Caravan. Retrieved from: https://caravanmagazine.in/health/india-shift-to-insurance-led-private-healthcare-weakens-its-ability-to-combat-covid

Dogan, E., Ulucak, R., Kocak, E., & Isik, C. (2020). The use of ecological footprint in estimating the environmental Kuznets curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Sci. Total. Environ., 723(2020), 1-9.

Eccleston-Turner, M., & Upton, H. (2021). International collaboration to ensure equitable access to vaccines for COVID-19: The ACT-accelerator and the COVAX facility. The Milbank Quarterly. Retrieved from: https://doi.org/10.1111/1468-0009.12503

Fabre, A., Straub, S. (2023). The Impact of Public–Private Partnerships (PPPs) in Infrastructure, Health, and Education. Journal of Economic Literature, 61(2): 655-715.

Fortune. (2020). Oxford's COVID vaccine deal with AstraZeneca raises concerns about access and pricing. Retrieved from:

https://fortune.com/2020/08/24/oxford-astrazeneca-covid-vaccine-deal-pricing-profit-concerns/

Gavi. (2020). Up to 100 million COVID-19 vaccine doses to be made available for low- and middle-income countries as early as 2021. Retrieved from: https://www.gavi.org/news/media-room/100-million-covid-19-vaccine-dosesavailable-low-and-middle-income-countries-2021

Gavi. (2021). COVAX-the-Vaccines-Pillar-of-the-Access-to-COVID-19-Tools-ACT-Accelerator.Pdf. Retrieved from: https://www.gavi.org/sites/default/files/covid/covax/COVAX_the-Vaccines-Pillar-of-the-Access-to-COVID-19-Tools-ACTAccelerator.pdf

Hassan, S., Othman, Z., & Karim, M. Z. A. (2011). Public and private investment in Malaysia: A panel time-series analysis. International Journal of Economics and Financial Issues, 1(4), 199-210.

Hellowell, M, Myburgh, A., Sjoblom, M., & Gurazada, S. (2020). COVID-19 and the collapse of the private health sector: A threat to countries' response efforts and the future of health systems strengthening?

Retrieved from: https://ghpu.sps.ed.ac.uk/covid-19-and-the-collapse-of-the-private-health-sector-a-threat-to-countries-response-efforts-and-the-future-of-health-systems-strengthening/

Hisamudin, H. A. (2020). Fight private hospitals' greed, insurance firms told amid probe into RM200 fee for masks. Free Malaysia Today. (2020, 21 May). Retrieved from:

https://www.freemalaysiatoday.com/category/nation/2020/05/21/fight-private-hospitals-greed-insurance-firms-told-amid-probe-into-rm200-fee-for-masks/

Holzscheiter, A., Thurid, B., & Laura, P. (2016). Emerging governance architectures in global health: Do metagovernance norms explain inter-organisational convergence? Politics and Governance, 4(3), 5–19.

Khan, Z., Ali, M., Kirikkaleli, D., Wahab, S., & Jiao, Z. (2020). The impact of technological innovation and public-private partnership investment on sustainable environment in China: consumption-based carbon emissions analysis. Sustain Dev 28(5), 1317–1330

Khursheed, M. R., Mehmood, K. A., & Hussain, M. N. (2023). Public-private investment sustenance: A glance of education sector of Pakistan. Journal of Development and Social Sciences, 4(4), 381-393.

Kirikkaleli, D., & Adebayo, T. S. (2021) Do public-private partnerships in energy and renewable energy consumption matter for consumption-based carbon dioxide emissions in India? Environ Science and Pollution Research, 28, 30139–30152.

Kirikkaleli, D., Adebayo, T.S., Khan, Z., & Ali, S. (2021). Does globalization matter for ecological footprint in Turkey? Evidence from dual adjustment approach. Environ. Sci. Pollut. Res.28(2021), 14009–14017.

Kruse, F. M. & Jeurissen, P. P. T. (2020). For-profit hospitals out of business? financial sustainability during the COVID-19 epidemic emergency response. International Journal of Health Policy and Management, 9(10), 423-428.

Limpot, K. (2020). Duterte orders probe on hospitals refusing COVID-19 patients. CNN Philippines. Retrieved from: https://www.cnnphilippines.com/news/2020/4/17/Duterte-probe-hospital-refusing-covid-patients.html

Lin, B., & Omoju, O. E., (2017). Does private investment in the transport sector mitigate the environmental impact of urbanisation? Evidence from Asia. J. Clean. Prod. 153, 331-341.

Loo, C. (2020). RM200,000 compound issued to private hospital that overcharged face masks. The Sun Daily. Retrieved from: https://www.thesundaily.my/local/rm200000-compound-issued-to-privatehospital-that-overcharged-face-masks-yg2448346

Maluleke, G., Odhiambo, N. M., & Nyasha, S. (2023). Symmetric and asymmetric impact of public investment on private investment in South Africa: Evidence from the ARDL and non-linear ARDL approaches. Cogent Economics & Finance, 11(1), 1-18.

Martiniello, L., Morea, D., Paolone, F., & Tiscini, R. (2020). Energy performance contracting and public-private partnership: How to share risks and balance benefits. Energies, 13, 1-16.

Mehmood, K. A. (2023). FDI and poverty in-line with quality of governance and voice and accountability: Follow-ups based on linear and non-linear ARDL. Pakistan Journal of Commerce and Social Sciences, 17(2), 394-423.

Mirror Online. (2020). Wait, what? Rs 27,000 charged in three days for PPE kits at Kalyan private hospital. Mumbai Mirror. 29 June. Retrieved from:

https://mumbaimirrorindiatimes.com/coronavirus/news/waitwhat-rs-27000-charged-in-three-days-for-ppe-kits-at-kalyan-private-hospital/articlesho w/76682 836.cms

Morea, D., & Balzarini, M. (2019). Bankability of a public private partnership in agricultural sector: A project in Sub Saharan Africa. Agric. Econ. 65, 212–222.

Morea, D., & Gebennini, E. (2021). New project financing and eco-efficiency models for investment sustainability. Sustainability, 13, 1-3.

Nazari, T. (2020). Private hospital in KL under investigation for Overpriced face masks. The Rakyat Post. Retrieved from: https://www.therakyatpost.com/2020/05/16/privatehospital-in-kl-under -investigation-for-overpriced-face-masks/

Oniş, Z., & Kutley, M. (2021). The anatomy of Turkey's new heterodox crisis. The interplay of domestic politics and global dynamics. Turkish Studies, 22(4), 499–529.

Orissa Post. (2020a). Identifying private hospitals to treat COVID-19 patients for free or at nominal cost: Supreme Court tells Centre. Orissa Post. Retrieved from: https://www.orissapost.com/identify-private-hospitals-to-treat-covid-19-patients-for-free-or-at-nominal-cost-supreme-court-tells-centre/

Orissa Post. (2020b). Few private hospitals doing 'black marketing of beds', refusing admission to COVID patients: Kejriwal. Orissa Post. Retrieved from: https://www.orissapost.com/few-private-hospitals-doing-black-marketing-of-beds-refusing-admission-to-covid-patients-kejriwal/

Orissa Post. (2020c). Private hospitals to bear COVID-19 treatment cost. Orissa Post. Retrieved from: https://www.orissapost.com/private-hospitals-to-bear-covid-19-treatment-cost/

Pesaran, M., Shin, Y., & Smith, R. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3 Special Issue), 289-326.

Puyvallée, A. d. B., & Storeng, K. T. (2017). Protecting the vulnerable is protecting ourselves: Norway and the coalition for epidemic preparedness innovation. Tidsskrift for Den Norske Legeforening. Retrieved from: https://doi.org/10.4045/tidsskr.17.0208

Qiao, H., Zheng, F., Jiang, H., & Dong, K. (2019). The greenhouse effect of the agriculture economic growth-renewable energy nexus: evidence from G20 countries. Sci. Total Environ. 671, 722-731.

Rahman R. (2020). Shrinking the state: the rise of private sector healthcare in Bangladesh. Journal of International Development, 32(5), 717-726.

Public-Private Sector Investment Collaboration in Health Sector of Pakistan: Do Taxes on Producer and Government Effectiveness Matter?

Rahman, R. (2007). The state, the private health care sector and regulation in Bangladesh. Asia Pac J Public Adm., 29, 191-206.

Rahman, R. (2019). The privatization of health care system in Bangladesh. Int J Health Care Qual Assur., 31, 97-107.

Rahman, R. (2020). The privatization of health care system in Saudi Arabia. Health Services Insights, 13,1-8.

Rahman, R., & Alsharqi, O. (2019). What drove the health system reforms in the Kingdom of Saudi Arabia? An analysis. Int. J. Health. Plann. Manage. 34, 100-110.

Roehrich, J. K., Lewis, M. A. & George, G. (2014). Are public-private partnerships a healthy option? A systematic literature review. Soc Sci Med, 113, 110-119.

Shahbaz, M., Raghutla, C., Song, M., Zameer, H., & Jiao, Z. (2020). Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ, 86, 1-12.

Stein, F. (2021). Risky business: COVAX and the financialization of global vaccine equity. Globalization and Health, 17(1), 1–11.

Stein, F. (2021). Risky business: COVAX and the financialization of global vaccine equity. Globalization and Health, 17(1), 1–11.

Storeng, K. T. (2014). The GAVI alliance and the 'Gates Approach' to health system strengthening. Global Public Health, 9(8), 865–879.

Storeng, K. T., & de Bengy Puyvallée, A. (2018). Civil society participation in global public private partnerships for health. Health Policy and Planning. Retrieved from:

https://doi.org/10.1093/heapol/czy070

Storeng, K. T., de Bengy Puyvallée, A., Stein, F., & McNeill, D. (2021). What Norway should ask of the pharmaceutical industry in the Covid-19 pandemic [Policy Brief]. Retrieved from: https://www.sum.uio.no/english/research/projects/norwayspublic-private-cooperation-for-pandemic-p/policy-briefs/policy-brief-panprep-sum-uio-03-2021-what-norwayshould-ask-of-the-pharma.pdf

The Guardian. (2021a, January 22). South Africa paying more than double EU price for Oxford vaccine. The Guardian. Retrieved from:http://www.theguardian.com/world/2021/jan/22/southafrica-paying-more-than-double-eu-price-foroxford-astrazeneca-vaccine

The World Bank (1992). Governance. The World Bank, Washington, DC.

The World Bank (1994). Governance and Development. The World Bank, Washington, DC.

The World Bank (1993). World development report investing in health. The World Bank, Washington, DC.

Tiglao, R. D. (2020). Conert selected private hospitals into dedicated COVID-19 centers. The Manila Times. Retrieved from:

https://www.manilatimes.net/2020/03/23/opinion/columnists/topanalysis/convert-selected-private-hospitals-into-dedicated-covid-19-centers/705090/

Toronto Sun. (2021). LILLEY: Trudeau makes Canada 'vaccine pirate,' stealing from poor nations. Torontosun. Retrieved from: https://torontosun.com/opinion/columnists/lilley-trudeau-makes-canada-vaccinepirate-stealing-from-poor-nations

Tu, J. (2013). Health care transformation in China ___ the privatization and deprivation of health care in a Chinese country. J Camb Stud. 31, 981-1014.

Uplekar M. (2000). Private health care. Soc Sci Med. 51, 897-904.

Uplekar, M. (2000). Private health care. Soc Sci Med. 51, 897-904.

Usher, A. D. (2021). A beautiful idea: How COVAX has fallen short. The Lancet, 397(10292), 2322-2325.

Waqih, M. A. U., Bhutto, N. A, Ghumro, N. H., Kumar, S., & Salam, M. A. (2019) Rising environmental degradation and impact of foreign direct investment: An empirical evidence from SAARC region. J Environ Manag, 243,472–480.

Whiteside, H. (2020). Public-private partnership: Market development through management reform. Review of International Political Economy, 27(4), 880-902.

WHO. (2000). Health systems: Improving performance (The world health report 2000), Geneva, Switzerland: World Health Organization.

Williams, O. D. (2020). COVID-19 and private health: Market and governance failure. Development, 63, 181-190. World Economic Forum. (2022). How to harness the transformative potential of public-private partnerships. Retrieved from: https://www.weforum.org/agenda/2022/01/how-to-harness-transformative-potential-public-private-partnerships/

Xue, Y., Guan, H., Corey, J., Wei, H., & Yan, H., (2017a). Quantifying a financially sustainable strategy of public transport: private capital investment considering passenger value. Sustainability, 9(2), 1-20 Xue, Y., Guan, H., Corey, J., Zhang, B., Yan, H., Han, Y., & Qin, H., (2017b). Transport emissions and energy consumption impacts of private capital investment in public transport. Sustainability 9(10), 1-19. Yang, B., Jahanger, A., & Ali, M. (2021). Remittance inflows affect the ecological footprint in BICS countries: Do

Ying, X. (2020). ALERJ Wants intervention in Rio's private hospitals refusing to treat COVID-19 patients. The Rio Times. Retrieved from: https://riotimesonline.com/brazilnews/miscellaneous/covid-19/alerj-wants-intervention-in-rios-private-hospitals-refusing-to-attend-coronavirus-infected-patients/

technological innovation and financial development matter? Environ. Sci. Pollut. Res., 28, 23482–23500.

Young, K. (2015). Markets Serving States: The Institutional Bases of Financial Governance in the GCC. London, England: Kuwait Programme on Development, Governance and Globalisation in the Gulf States, The London School of Economics and Political Science.

Young, K. (2018). The difficult promise of economic reform in the Gulf. Houston, TX: James A. Baker III, Institute for Public Policy, Rice University.